欢迎您访问爱游戏(ayx)中国官方网站!
全国咨询热线: 13841774488

新闻资讯

常见问题

Python轴承故障诊断之经验模态分解EMD原理介绍

作者:小编2024-06-12 01:00:40

  Python轴承故障诊断之经验模态分解EMD原理介绍时频处理方法,特别适用于非线性、非平稳信号的分析处理[1]。其本质是一种对信号进行分解的方法,将信号分解为各个相互独立的成分的叠加,依据数据自身的时间尺度特征来进行信号分解,具备自适应性。

  EMD的优点在于它是一种自适应的、数据驱动的分解方法,不需要预先假设信号的分布或结构。这使得它适用于处理各种类型的信号,包括非线性和非平稳信号。

  EMD 认为任何一个复杂序列都是由多个单频率信号叠加而成,因此可以分解成若干个 本征模态函数(Intrinsic Mode Functions, IMF),IMF 的各个分量即代表了原始信号中的各频 率分量,并按照从高频到低频的顺序依次排列,这也是 IMF 的物理含义[2]。

  本征模态函数(Intrinsic Mode Functions, IMF)就是原始信号被 EMD 分解之后得到的各层信号分量。任何信号都可以拆分成若干个 IMF 之和。IMF 有两个假设条件:

  EMD的分解过程是一个迭代的过程。首先,对原始信号进行极值点的提取,然后通过连接极值点的均值得到第一轮的近似IMF(也叫做“本征模态”)。接下来,将这个近似IMF从原始信号中减去,得到一个新的信号,然后对这个新信号再次进行极值点提取和均值连接,得到第二轮的近似IMF。如此往复,直到得到的近似IMF满足某种停止准则。对于原始信号 X(t)

  从待分解的信号中识别局部极值点,包括局部极大值和局部极小值。极值点是信号中的局部特征,能够帮助刻画信号的振荡特性。

  通过连接相邻的局部极大值和局部极小值,构建信号的上包络线和下包络线。上包络线 U(t) 由局部极大值连接而成,下包络线 L(t) 由局部极小值连接而成。包络线用于描述信号的振荡范围。

  计算上包络线和下包络线的平均值,得到均值函数 m1。将原始信号减去均值函数,得到一维信号 h1。

  对减去均值函数后的一维信号 h1,重复步骤1-3的过程,直到得到的剩余信号为“单调信号”,或者满足IMF的两个假设条件。迭代k次的IMF为

  在每一次迭代中,通过极值点提取、构建包络线等步骤,得到的剩余信号被称为一个本征模态函数(IMF)。IMF具有局部特征爱游戏官方网站,并且代表了信号在不同尺度上的振荡模式。使用上述方法得到的第一个IMF记为c1, 然后将c1从原始信号中分离,得到

  r1 - c2 = r2,... ..., r(n-1) -cn = rn当cn或rn小于某一设定值,或者得到的剩余信号为“单调信号”,无法提取更多的IMF时,迭代终止,得到最终的分解结果为:

  将得到的IMF函数进行逐个提取,直到无法再得到新的IMF为止。最终得到的IMF函数可以被看作是信号在不同时间尺度上的振荡模式,它们的组合可以重构原始信号。

  这些基本步骤构成了EMD方法的核心流程,通过这些步骤,EMD可以将复杂的信号分解成不同尺度和频率的本征模态函数,从而揭示信号的局部特征和振荡模式。

  通过经验模态分解(EMD)得到了信号的分量,可以进行许多不同的分析和处理操作,以下是一些常见的对分量的利用方向:

  (1)信号重构:将分解得到的各个本征模态函数(IMF)相加,可以重构原始信号。这可以用于验证分解的效果,或者用于信号的重建和恢复。

  (2)去噪:对于复杂的信号,可能存在噪声或干扰成分。通过分析各个IMF的频率和振幅,可以识别和去除信号中的噪声成分。

  (3)频率分析:分析每个IMF的频率成分,可以帮助理解信号在不同频率上的振荡特性,从而揭示信号的频域特征。

  (4)特征提取:每个IMF代表了信号的局部特征和振荡模式,可以用于提取信号的特征,并进一步应用于

  (5)信号预测:通过对分解得到的各个IMF进行分析,可以探索信号的未来趋势和发展模式,从而用于信号的预测和预测建模。(6)

  (7)异常检测:通过分析每个IMF的振幅和频率特征,可以用于探测信号中的异常或突发事件,从而用于异常检测和故障诊断。

  在得到了信号的分量之后,可以根据具体的应用需求选择合适的分析和处理方法,以实现对信号的深入理解、特征提取和应用。对于后续的研究,主要利用IMF分类来对故障信号做模式识别,即故障分类。

  声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。举报投诉

  分类 /

  与健康监测,但是感觉无从下手,没有实物进行数据采集,想来也只能模拟采集振动信号,但这个振动信号又该如何产生,看网上有凯斯西储大学

  与分析的问题。面对五花八门的问题,有时候我可以根据一些信息进行判断,有时候什么信息也没有,这样的情况下我的所谓判断只能是猜测,恐怕距离,也十分遥远。大家

  方法速度慢、难以满足实时处理的要求,提出一种基于计算统一设备架构( CUDA)加速的高铁振动信号

  方法 /

  方法。该方法将数字图像处理的频率分辨率方法与LMD相结合,首先确定振动信号中所有局部极值点的频率分辨率,将振动信号分为低频率分辨率区域和高频率分辨率区域;然后对高频率分辨率区域进行LMD

  方法 /

  基于Arm Cortex-CM85内核的RA8D1作为 通过MIPI DSI实现LVGL显示

  labview datasocket绑定点击浏览选择dstp服务器然后一直转圈圈选不了怎么回事啊各位大佬?

  I.MX6ULL-飞凌 ElfBoard ELF1板卡 - 如何在Ubuntu中编译OpenCV库(X86架构)